A generic model for glucose production from various cellulose sources by a commercial cellulase complex
نویسندگان
چکیده
The kinetics of cellulose hydrolysis by commercially available Cellubrix were described mathematically, with Avicel and wheat straw as substrates. It was demonstrated that hydrolysis could be described by three reactions: direct glucose formation and indirect glucose formation via cellobiose. Hydrolysis did not involve any soluble oligomers apart from low amounts of cellobiose. Phenomena included in the mathematical model were substrate limitation, adsorption of enzyme onto substrate, glucose inhibition, temperature dependency of reaction rates, and thermal enzyme inactivation. In addition, substrate heterogeneity was described by a recalcitrance constant. Model parameters refer to both enzyme characteristics and substrate-specific characteristics. Quantitative model development was carried out on the basis of Avicel hydrolysis. In order to describe wheat straw hydrolysis, wheat straw specific parameter values were measured. Updating the pertinent parameters for wheat straw yielded a satisfactory description of wheat straw hydrolysis, thus underlining the generic potential of the model.
منابع مشابه
Investigating Cellulase Producing Potential of Two Iranian Thermoascus aurantiacus Isolates in Submerged Fermentation
Cellulose is the most plentiful renewable biopolymer in nature which could be utilized by cellulolytic enzymes. Cellulases are among the most important groups of industrial enzymes which are widely consumed in biofuel production, pulp and paper, textile, and detergent industries. These enzymes can support a cleaner environment through reducing chemical processes in mentioned industries and agro...
متن کاملSaccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production
BACKGROUND Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial app...
متن کاملA Novel Biochemical Route for Fuels and Chemicals Production from Cellulosic Biomass
The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase producti...
متن کاملIncreased Production and Activity of Cellulase Enzyme of Trichoderma reesei by Using Gibberellin Hormone
Cellulolytic complex are enzymes capable of hydrolyzing cellulose. Due to rapid growth in population and industrialization, most countries are required to produce more fuel. Production of bioethanol from lignocellulosic biomass is very challenging due to environmental pollution by fossil fuels. Cellulases play a significant role in biotechnological processes. The cost of production of cellulase...
متن کاملOptimization of Extracellular Cellulase Production by Trichoderma harzianum
ABSTRACT Background and Objectives: Cellulose is a major component of plant biomass, which can be converted into biofuels and valuable chemicals. The key step in utilization of this organic material is its hydrolysis into soluble sugars. This study evaluated cellulase production by Trichoderma harzianum under different pH values, temperatures and incubation...
متن کامل